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Chapter 1: Regular Surfaces

Local Parametrizations of Class Ck :

Def:: Consider a subset M ⊂ R3. A function F (u, v) : U → O from an
open subset U ⊂ R2 onto an open subset O ⊂ M is called a Ck local
parametrization (or a Ck local coordinate chart) of M (where k ≥ 1 ) if all
of the following holds:
(1) F : U → R3 is Ck when the codomain is regarded as R3.
(2) F : U → O is a homeomorphism, meaning that F : U → O is bijective,
and both F : U → O and F−1 : O → U are continuous.
(3) For all (u, v) ∈ U , the cross product:

∂F

∂u
× ∂F

∂v
̸= 0.

The coordinates (u, v) are called the local coordinates of M . If F : U →
M is of class Ck for any integer k, then F is said to be a C∞ (or smooth)
local parametrization.

Generalized Stereographic parametrization:

We define n-dimesnion sphere as

Sn := (x1, . . . , xn+1) ∈ Rn+1 : x21 + . . .+ x2n+1 = 1

We can parametrize this by considering the projection onto Rn.
Let s =

∑n
i=1 x

2
i , then we define the functions

F+(x1, . . . , xn) := (
2x1
s+ 1

+ . . .+
2xn
s+ 1

+
s− 1

s+ 1
)
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This parametrizationRn → Rn+1 convers the whole sphere except (0, . . . , 0, 1).

F−(x1, . . . , xn) := (
2x1
s+ 1

+ . . .+
2xn
s+ 1

+
−s+ 1

s+ 1
)

This parametrizationRn → Rn+1 convers the whole sphere except (0, . . . , 0,−1).
The inverse can be found to be

F−1
+ (x1, . . . , xn+1) = (

x1
1− xn+1

, . . . ,
xn

1− xn+1
)

F−1
− (x1, . . . , xn+1) = (

x1
1 + xn+1

, . . . ,
xn

1 + xn+1
)

Transition map for this parametrization

With regards to covering the whole sphere, notice that the transition map
is given by

F−1
− ◦ F+(x1, . . . , xn) = (

x1
s
, . . . ,

xn
s
) = F−1

+ ◦ F−(x1, . . . , xn)

These map are smooth since in our domain s ̸= 0.

Chapter 2: Abstract Manifolds

Homeomorphism

As defined in the notes, F : U → O is homeomorphism if F is bijection and
both F and F−1 are continuous.
Properties:
1. Converserves compactness. Example (0, 1) is homeomorphic to R but
[0, 1] is not.
2. Open and close is conserved. Example (0, 1) is not homeomorphism to
[0, 1].
3. Connectness is conserved. Example punctured (0, 2π) is not homeomor-
phic to a punctured circle (since it is still connected).
Exacmple of F such that F is bijective and continuous but F−1 is not:
Consider parmaterization of circle by F = (cos t, sin t) for t ∈ [0, 2π)
For a compact set, F is 1-1 and contiuous =⇒ F−1 is continuous =⇒ F
is homeomorphism.
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Locally Euclidiean of Dimension n

Def: (χ, T ) is called locally eucliean of dimension n if : ∀x ∈ X, there is
an open neughbourhood U ∈ T and a homeomorphism h : U → U ′ with
U ′ ⊂ Rn open.
As an example, a double cone is not lcoally euclidean at the vertex because
the open ball around the vertex is always 3D, so we can’t really express it
by 2D I think.
More formally, assume it is a manifold and consider the parametrization
at the vertex. Removing the vertex, our space is disconnection, while the
parametrizing space remains connected after removal of a distinct point
(since it is open).

Topological Manifolds

Def: A Hausdorff (points are separable), second countable topological space
(space has countable basis) M is said to be an n-dimensional topological
manifold if for any point p ∈ M,∃ a homeomorphism F : U → O, U ⊂ Rn.
This hemomorphism is also the local parametrization.

Smooth Manifolds

For abstract manifolds, the manifold may not be in Rn so it may not make
sense to talk about differentiability of F . However, we can define defirenti-
ation for transition maps :
Def: An n-dimensional topological manifold M is said to be smooth if
there is a collection A of local parametrizations Fα : Uα → Oα such that
(1) ⋓α∈AOα = M so these local parametrizations cover all of M
(2) all transition maps F−1

α ◦ Fβ are smooth on their domains.
Examples: Easy to see that if a topological manifold can be covered by
one gloval parametrization (exacmple in Rn), then it is a smooth manifold.
The graph of Tf of any continuous f is also a smooth manifold covered by
one parametrizations.
Any regular curve γ(t) is a smooth manifold of dimension 1.
Any regular surface in R3 are smooth manifolds.

Tangent spaces

Another way to define these spaces is the collection of vectors which ”start”
from p, and follow their derivative at p:

TpM = {γ′(0) : (−ϵ, ϵ) → Mdifferentiable with γ(0) = p}
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where γ is the parametrised curve γ : R → M .
Remark: This should only be true if manifold is not too abstract, i.e.
M ∈ Rn since our tangent space lives in Rn. This definition can be ex-
tended to abstract manifolds but im too lazy to think about it in the the
video

For Abstract Manifolds:

The partial derivative ∂
∂uj

(p) can be thought as an operator:

∂

∂uj
(p) : C1(M,R) → R

f → ∂f

∂uj
(p)(p)

where C1(M,R) denotes the set of all C1 functions from M to R. Hence we
define the tangent spaces

TpM = span{ ∂

∂u1
(p), . . . ,

∂

∂un
(p)}

where the partials are with respect to the local parametrization F (u1, . . . , un).
Surprisingly, the definition does not depend on the choice of parametriza-
tion since { ∂

∂uj
(p)}ni=1 happen to be linearly independent, so dimTpM =

n = dimM .

Tangent maps

Partial Derivates

Definition 2.29 (Partial Derivatives of Maps between Manifolds). Let Φ :
Mm → Nn be a smooth map between two smooth manifolds M and N . Let
F (u1, . . . , um) : UM → OM ⊂ M be a smooth local parametrization around
p and G (v1, . . . , vn) : UN → ON ⊂ N be a smooth local parametrization
around Φ(p). Then, the partial derivative of Φ with respect to ui at p is
defined to be:

∂Φ

∂ui
(p) :=

n∑
j=1

∂vj
∂ui

∣∣∣∣∣∣
F−1(p)

∂

∂vj
(Φ(p)).
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Here (v1, . . . , vn) are regarded as functions of (u1, . . . , um) in a sense
that:

(v1, . . . , vn) = G−1 ◦ Φ ◦ F (u1, . . . , um)

Remark: The partial derivation ∂ϕ
∂ui

does depend on F , the parametrization
of domain space, but not on G, the parametrization of target space.

Chapter 7: Euclidean HyperSurfaces

Regular HyperSurfaces

Def: Consider the local parametrizations that cover the whole space, we
require these 3 conditions to holds:

(1)Fα(u
1
α, . . . u

n
α) is smooth

(2)Fα is a homeomorphism

(3) The vectors {∂Fα

∂u1α
, . . . ,

∂Fα

∂unα
} are linearly indepedent

Examples: Graphs are HyperSurfaces, we can easily check the 3 condi-
tions.
z The tow Stereographic parametrizaitons of n-dimensional sphere are hy-
persurface.
Many results from regular surfaces follow to hypersurface.

Fundamental Forms and Curvatures

First Fundmental Form

Def: For a hypersurface
∑n ⊂ Rn+1, a 2-tensor g on

∑
such that

g =

〈
∂F

∂ui
,
∂F

∂uj

〉
dui ⊗ duj

Remember from Chapter 3, for two linear functionals A ∈ V ∗, B ∈ W ∗,

A⊗B : V ×W → R, (A⊗B)(X,Y ) = A(X)B(Y )

for dui, duj , is ith component and jth component multiplied together.
dui ⊗ duj = δij (1 iff i = j).
The Matirx [g] is defined similarly, without the tensor products.
This matrix is dependent on the local coordinates, which g is not.
It is also easy to see that this matrix is symmetric, which is always nice to
have.
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Second Forms

Def: Given a regualr hypersurface in Rn+1 with Gauss map ν. We define
the second fundamental form of Σ at p to be the 2-tensor:

h(X,Y ) := −⟨X,DY ν⟩ .

Under a local coordinate system (u1, · · · , un), we denote its component
as

hij := h

(
∂F

∂ui
,
∂F

∂uj

)
= −

〈
∂F

∂ui
,
∂ν

∂uj

〉
=

〈
∂2F

∂ui∂uj
, ν

〉
.

Example: For a graph, we can note taht

hij = ⟨ ∂2F

∂ui∂uj
, v⟩ =

∂2f
∂ui∂uj√
1 + |∇f |2

And the matrix [h] would then be

[h] =
Hess(f)√
1 + |∇f |2

where Hess(f) is the hessian = ∇∇f .
The shape operator Sp tells us how the normal vector v changes in all di-
rections.

Besides the definition of curvature as ∂T
∂s = ∂θ

∂s , intuitively we can also say
the curvature is the 1

radius of the circle that just touches that point.
Some more curvature formulations :

∂L

∂t
= −

∫
k2ds = −

∫
kdθ

Hamil and Cage paper - section 4

A strictly conves closed curve has some nice properties that we could use.
Firstly, strictly convex means that we can parametrize it by θ - the an-
gel from a fixed straight line (usually the x axis). This is because in a
strictly convex curve, this angle is strictly increasing (or decreasing) as you
go around the close loop. This formally means that the curvature is never
0.
Closed loop means that we travel a full 2π degrees, and that we end up in
the same point. In particular

∫ 2π
0 T (θ)dθ = 0 where T (θ) is the tangent.
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4.1 and 4.2

The curve shortening process is a flow where each shape follows the direction
of it’s curvature. So if at a given time t = t0 we have a curvature points
inwards, that point to go inwards at the rate of the curvature. Since we are
dealing with convex curves, we will only have inwards curvature.
Section 4.1 of the paper proved that the curve shortening process for the
convex curves is equivalent to an IVP for a PDE. This means that our
curve shortening flow only depends on the initial constructior an no other
facors. The paper also proved previous that during a process, a convex curve
remains convex by showing that the smallest curvature is always increasing
(so it never goes ”inside” as it is initially positive).

4.3

Def: Median curvature (different from mean curvation) k∗ is defines as

k∗ = sup{b|k(θ) > b on an interval of lenght atleast π}

This is useful for coming up with certain estimates:
Geometric Estimate bounds median curvature by ratio of arc lenght to
area.
Integral Estimate states that k∗(t) bounded on [0, T ) =⇒

∫ 2π
0 log k(θ, t)dθ

is also bounded on [0, T ).
Pointwise Estimate gives a strong bound for the opposite direction.∫ 2π
0 log k(θ, t)dθ is bounded on [0, T ) =⇒ k(θ, t) is uniformly bounded
on S1 × [0, T ).
Remarks: Boundedness of

∫ 2π
0 log(k(theta, t))dθ ≠⇒ boundedness of Bound-

edness of
∫ 2π
0 k(theta, t)dθ. As an example, let k(θ, t) = e

1
x .

4.3.1 : Given we have a proper curvature (satisfied 4.14), if we bound t such
that the area enclosed is bounded away from 0 (so it does not collapse), then
curvature k(θ, t) is uniformly bounded.
Since it does not collapse, we have a smallest ciricle who’s inverse radius
gives the curvature, hence was have na upper bound (basically geometric
estimate).
To prove uniformity, by integral estimate since k∗(t) is bounded, the given
log iintegral is bounded.
Since log integral is bouded, by pointwise estimate, we have that k is uni-
formly bounded.
Cool lemma: if the log integral is bounded, then for any δ > 0,∃C such
taht k(θ, t) ≤ C except on intervals of lenght ≤ δ.

7



Section 4.4

4.4.1 shows that k bounded =⇒ ∂k
∂θ is also bounded as our PDE shows

that ∂k
∂θ grows at most exponentially.

Additionally, if k is bounded =⇒ ∂k
∂θ is bounded alos =⇒

∫ 2π
0 (k′′)4 is

bounded. The proof is just by using the evolution equation.

This section assentially proves that if the areas is bounded away from 0,
kP (i) are all bounded for i ∈ N ∪ 0 .
This analysis can also give a bound with respect to time (given area does
not go to zero). Suppse the solution exists of [0, T ) with area bounded away
from 0, then k has a limit t → T which is C∞ and we can extend the solution
after T .
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