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Abstract

In this report we study the Curve Shortening Flow (CSF). We first see
why convex shapes are special, then we study some properties of the flow -
namely it’s affect on the arclenght, area and the overall shape, and finally
we conclude with some time bounds on CSF to show that inscribed curves
remain inscribed.

Properties of Convex Curves

We first turn our attention to strictly convex curves, and see why they may
be intersecting to study in the first place.

Parametrization of strictly Convex Curves

One interesting property is that we can parametrize strictly convex curves
by just one parameter § which represents the angle the tangent vector makes
with a fixed straight line (usually the z-axis).

The intuition is that if you travel along the the curve, the vector T is al-
ways moving along the same (clockwise or anticlockwise) direction since the
normal vector IV is always pointing inwards.

For a closed convex curve, we can easily see that # is in the domain [0, 27).
In particular we have
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Curvature on Convex Curves
The curvature k(s) is defined as

k(s) = “H;is)
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where T'(s) is the arclength parametrization.
One geometrically intuitive way to also understand it is with the follow
figure:

The curvature at point p is the inverse radius of the circle which touches
p, ie. k= 71
Guass - Bonnet Theorem for plane curves shows us that for any closed curve,
we have total curvation as

L
/ k(s)ds = 2mn
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Here n is actually the winding number - or how many times our curve twists
and turns.

We show that for convex closed curve we have n = 1.

Lemma 1: For any convex curve (not necessarily closed) , our total

curvature is at most 2.
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The last line follows from the fact that 6 is monotonous with domain [0, 27)
(as we discussed in previous section), hence the maximum possible change
in 0is 27r. W

By Gauss Bonnet, we hvae that for closed surves, total curvature is a
multiple of 27. Combining with Lemma 1, we get that for closed convex
curves, the total curvature is exaclty .



Curve Shortening process

The curve shortening process describes the flow when at each point on the
curve, the curve moves towards the vector N at the rate of k(p), the curva-

ture at that point. Formally, this flow can be describe by the equation
vy
— = —kN
ot

Hence we can see that to study this flow, we should consider smooth graphs
with continuous curvature.

This website : https://a.carapetis.com/csf/| provides a simulation of
the flow for any given closed curve.

As an example, a circle of radius r, has constant curvature % with N pointing
towards the center. This means that the circle is shrinking towards the center
at an increasing rate (w.r.t time). This shrinking is infact a global property
of this flow!

Analysing the Length

We want to show that the length is always decreasing, hence any closed
curve will be shrinking.
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Using Frenet equations, note that
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https://a.carapetis.com/csf/

Hence we arrive at the rate of change of length as

a _ / k?ds
di 0

which is clearly decreasing. B
Remark: Reference Hamilton and Cage 3.1.1.

Analysing the Area
Given the above results, we would also expect the area to decrease over time.

A = ¢ / oy =)

Taking the derivative

dA 1 0
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By our curve flow, % = —kN. Notice that the term xdy — ydz corresponds

to the line integral on the curve. So, using divergence theorem, we use the
fact taht the velocity of the curve along wht normal direction is exactly the
curvate with the divergence of the velocity field —kN.

dA
— =— / kds
dt ()
which is clearly decreasing.
Infact, by our results shown above, on a closed convex curve, we have that

% is exactly .

Remark: Reference Hamilon and Cage 3.1.7.

Invariance of convex curves

Since our flow agrees with the curvature (moves along the normal which is
always pointing inwards), we would expect a convex curve to remain convex
during the flow until it shrinks down to a point. This is indeed the case!
By Cage and Hamilton 3.1.6, we have the equation
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Since the space domain is compact, £ must achieve a minimum. Hence,
. . . .. 2
consider the point p with minimum curvature so that we have g% > 0.

Hence we get that
ok

E >
But since our initial curve was convex, i.e. k > 0, and we have shown
that signed curvature is always increasing, we always have positive signed
curvature which is sufficent to conclude that it remains convex.
Additionally, if £ = 0, i.e. we have a straight line segment, we can see that
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At the line segment, k = 0, but % > 0, hence a convex curve will quickly
(at the next instant) become a strictly convex curve.

Flow of non-convex curves

We have studied some properties about how the flow affects convex curves.
For non-convex curve, we still have the result that the lenghts and the areas
are always shrinking. Hence, just like convex curves, non-convex curves also
shrink down to a point. Therefore, we would expect, that a non-convex
curve ”smooths out eventually” into a convex curve.

This is exactly the statement of Cage-Hamilton-Grayson Theorem.
Cage-Hamilton Theorem: Consider the IVP for curve shortening flow
where the initial curve 7y is convex, embedded and closed. Then, the curve
has a unique solution which is uniformaly convex for each ¢ as it shrinks to
a point.

Grayson’s Theorem Convergence to a round point is given by the exis-
tence of a unique point xy € R? such that the rescaled flows

’Y{\ =X\ (7T+>\—2t - $0)

converge of A — oo to the round circle {9B, /=5 }1e(—o0,0) Which shrinks.
If the initial curve =y is closed embedded cruve, then the curve shortening
flow converges to a round point.

Hence Grayson generalized Cage-Hamilton by proving that non-convex curves
eventually become convex so that we can apply the same analysis to it even-
tually.



Bounds on Time

We have shown that any closed curve shrinks to a point p. In fact, we have
shown that the time T taken for the curve to reach singularity is finite since

we showed that
“a_
a7

Hence, we can easily see T' < %.
In this section, we try to create a a bound on T with respect to the arclength
[ instead.

Bounds on Arclength

Since we know the bound of T" with respect to the initial area Ag, we will
try to create a bound on [y, the initial arclength, with respect to area.

In order words, given a fixed arclength, we want to find the shape with the
greatest possible area.

Our shape much be convex

Firstly, we can not have any concave shape.

Assume there exists a concave shape with the greatest area. Then by
defintion there exists 2 points a, b such that the line segment joining a, b is
not entirely within the shape.

We simply reflect the segment of the curve by this line segment, so for the
same arclength, we get a greater area which is a contradition. ll



Focusing on one half

We now focus on only convex shapes. Infact, within convex shapes we just
focus on half of the shape due to the symmetry.

We travel around our curve for half the arclenght and split up our curves.
Assume that one of the halves has greater area, then we can just duplicate
and join it together to get a greater area.

If the blue half has more area, we just join to get a "better” figure

Focusing on half curves

Now we take any "half curve” with endpoints a,b and take any arbritrary
point ¢ on the curve. Now consier the orange triangle as shown in the figure,
and notice that we can vary the angle ZACB while keeping the arclenght
constant.

We can varry the angle while keeping the length same

So now, our problem just becomes finding the angle which maximizes
the area of this traingle. It is easy to see that ZAC'B must be 90°.
Therefore, our shape must be such that for any given ¢, Z/ACB = 90° —>
our half curve is a semi-cricle = our ideal shape is a circle. B



The isoperimetric property

So, for a fixed arclength [, a circle gives us the greatest area A, with the
ratio
A wr? oy

I 2mr 2
Here r is the radius of the circle we get with arlength [. We wish to get rid
of this r and so we will focus on 2.
Notice that for a given [?, the circle would still give us the greatest area.

A 2 1
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Finally, we get the isoperimetric bound for the arclength
12> 4rA

where the equality holds only for circle.

Bounds on time
Now that we have related Ag to lg, we arrive at the following bound :

Ag 12
T< =<
— 2 ~ 872
As a remark, we can notice that for a fixed length, the circle takes the longest
time to reach a point given by
p_ B
82 82 2

We can also relate this to curvature k, since a circle has curvature k = %
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Bounding with curvature

This, in fact gives us an upper bound for strictly convex corve

1
T g
where k;,;» is the minimum curvature at time ¢ = 0.
Intuitively, this means that if we find a circle of radius r such that our graph
~ is inscribed within the circle, then the graph will reach singularity before
the circle.
Doing the same analysis, we a lower bound on the time by taking k... at

t=20
1
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Intuitively, this also means that if we find a circle of radius 7’ such that our
circle is inscribed within the graph «, then the circle will reach singularity
before the graph.

So far, for the graph -, we have found 2 circles C1, Cs, such that

T(Ch) <v <T(C)
Where T'(7y) is the time taken for v to reach singularity.

We can actually make the bound tigther by claiming that any C; that is
inscribed within ~ will finish first, and any Cy which inscribes « will finish
later.

We present the proof of the later case, the proof for former case follows
similarly.

Assume we have a Cy which incribes the graph v and we consider the mini-
mum ¢ = tg such that 3 a point p on both ~v and Cs.




It is easy to see that the curvature k+(p) > k¢, (p) hence this point can
not shrink slower than the circle = it will never ”cross” the circle =
it remains inscribed inside the circle. B

Inscribed Graphs

We now extend this idea to incribed graphs.
Assume we have two graphs 1, 2 such that -+ isinscribed within ~,. For-
mally, ”inscribed” here means that

d(t) = inf [|y2(t) = n ()] = 0

T2

Assume at some point tg,d(tp) = 0 = I points p; € 71, p2 € 2 such
that P1 = Dp2.
We use a similar idea as previous section, but now we use the maximum
principle to argue that at this point, k., (p1) > k,,(p2). Consider the equa-
tions of evolution, these two points can not ”"cross” each other =— v
remains inscribed inside ~s.
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higher dimensions called the Mean Flow Curvature and I hope to study
that in some future. There is also some analysis on the forming of multiple
singularities which is an interesting area of study.
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